
Intelligent agents are expected transform the human society by enabling the next generation of technology such as per-1
sonalized education and health, automated enterprise workflows, tailored information access, and advanced manufac-2
turing. To materialize this vision, agents must be designed to operate effectively within human systems. Not surprisingly,3
natural and effective collaboration between intelligent agents and humans on complex tasks is the next frontier in artificial4
intelligence (AI) and machine learning (ML) research [1]. Generative AI (GenAI) methods have enabled human-machine in-5
teraction using natural modalities such as language, diagrams, images etc. Building upon this breakthrough, agents must6
be imparted with capabilities to reason about our world’s structure and dynamics, diversity in tasks, and humans’ individ-7
ual needs.8

I have 15 years experience in developing intelligent agents that collaborate with humans. I apply a systems lens and9
build agent architectures with diverse reasoning and learning components. Additionally, I adopt insights about human de-10
cision making, behavior, and learning from social sciences to build agents that are both human-like and human-aware. My11
interdisciplinary work has been published at venues for AI [2, 3, 4, 5, 6], HCI/HRI [7, 8, 9], AI & society [10, 11, 12, 13], and12
human cognition & cognitive systems [14, 15, 16, 17, 18]. It has been supported by government agencies (DARPA, ARPA-13
E, AFOSR, and NSF/NIH) as well as corporations (Xerox, Kaiser Permanente). Further, it has resulted in a growing patent14
portfolio.15

Research Context, Vision, and Experience16

A Systems Lens Effective human-agent collaboration in the real world requires a systems lens [19]. An agent must un-17
derstand the world, make productive decisions given its observations, and act to pursue its goals. In addition, it must also18
exchange information with human partners through natural modalities. I take a four-pronged approach towards develop-19
ing collaborative agents. First, I draw upon the insights in cognitive science about the nature of the human mind to build20
human-like agent systems that have multiple intelligent capabilities - vision, learning, reasoning, planning, task execution,21
dialog etc. Second, I adapt descriptive models of human decisions, behavior, and learning in social sciences into prescrip-22
tive models to be used within an agent’s decision making processes making it human-aware. Third, I embed agents in in-23
terfaces and embodiments to study the principles of natural collaborative human-AI interaction. Finally, I evaluate agent24
performance using social science methods and human-centered metrics (e.g, flexibility, acceptability). This approach goes25
beyond benchmark datasets and computation-centric metrics (e.g, accuracy).26

Advances in Agent Architectures AI & ML technology is built on the design-and-deploy principle. This principle assumes27
that the deployment environment’s structure and dynamics are known at design time and are stationary post deployment.28
An AI designer programs a classical AI system based on their understanding of the deployment environment. Along similar29
lines, ML systems are trained on datasets presumed to reflect the generative processes in the deployment environment.30
When the assumptions that deployment environment is known and is stationary are violated, AI & ML technology is taken31
offline and reprogrammed. In contrast, humans adapt and learn with volition whenever the need arises.32

I build intelligent agents that adapt to an evolving world and changing task requirements both autonomously and with33
human teaching. I served as principal investigator for Open-World Learning (OWL, DARPA SAIL-ON) and Interactive Task34
Learning (ITL, DARPA GAILA). The agent architectures I build commit to the vision that complex intelligent behavior results35
from an interplay of diverse reasoning and learning methods. I received the AAAI 2018 Blue Sky award [20] for a frame-36
work for autonomous learning that integrates lower-level ML processes with higher-level learning strategies under the37
agent’s volitional control.38

OWL studies how agents can autonomously adapt in evolving, non-stationary environments. We introduce the idea of39
a novelty [2] - a meaningful change in the environment’s operational characteristics (e.g., change in gravity or a new tool is40
made available) that occurs after an agent has been deployed. Model-free learning architectures, such as deep reinforce-41
ment learning, experience catastrophic failures when facing novelties. Our agent architecture [2, 3] builds upon an explicit42
representation of a world model (e.g., a planning domain) encoding the environment’s structure and dynamics. The world43
model is reasoned and adapted with model-based reasoning (e.g., AI planning) and related machine learning methods.44
Our approach can elegantly handle novelties without the need for retraining or reprogramming. Inspired by human cog-45
nition, we pioneered a meta-cognitive reasoning process that maintains explicit expectations about the agent behavior in46
canonical, non-novel settings given its world model. Violations of those expectations indicates the presence of a novelty47
that the architecture characterizes in terms of changes to its world model. It then, accommodates that novelty through a48
novel model diagnosis and repair process. Our architecture is resilient, quick (learns 20x faster than deep reinforcement49
learning), and interpretable (encouraging human trust in learning agents).50

ITL investigates teachable agents that dynamically learn task models through natural human-AI interaction. At the Uni-51
versity of Michigan, I led the development of Rosie, a world model-based agent that learns interactively. It was built upon52
a cognitive agent architecture [21] and implemented a new paradigm for task model acquisition [18, 6] based on situated53
task-oriented dialog [17, 15]. It was the first in the literature to demonstrate interactive learning of grounded, comprehen-54
sive task-relevant knowledge (elements of a planning domain) in a single integrated agent system. At PARC/SRI, I continued55
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to build on this work. I developed a research agenda on embodied agents built with modern ML methods that learn from56
humans. We studied how humans naturally teach [7] and found that teaching is an intentional process in which teachers57
introduce new concepts, define them and provide examples, evaluate the learner’s competency, and expand what was58
taught previously. To exploit such iterative, incremental teaching, we developed an embodied agent architecture [14] that59
learns new task models using graph inference and generalization [22]. Most recently, we exploit large-language models to60
understand task-related natural language in embodied agents [23].61

Applications of Agent Technology I have built intelligent agents for various applications where the agents adopt an as-62
sistive role to a human, supporting their sense making, decision making, problem solving, and learning. This work brings63
together methods from human factors research (e.g., need finding studies, cognitive task analysis, quantitative/qualitative64
human studies) with AI systems engineering. Additionally, I adapt descriptive models of human decisions, behavior, &65
learning from social sciences - cognitive science, pyschology, behavioral economics - to develop prescriptive human models66
that enable agents to reason about their human partners.67

In recent work [24], we investigate how generative AI systems (GenAI) can support humans in sensemaking - under-68
standing their medical scans and reports. We found that in addition to being frequently incorrect, the responses produced69
were characteristically different from how a physician responds. While a physician discussed the specifics of the case fo-70
cusing on information that help the patient make productive decisions, GenAI produced general diagnostic knowledge71
about the disease. For better alignment, we are applying collaborative theory of discourse [19] to adapt GenAI’s constitu-72
tion on the fly. Particularly, we are developing response-generation guidance for GenAI based on our analysis of the physi-73
cians answers.74

Under NSF/NIH Smart and Connected Health, I developed interactive, coaching agents deployed on a mobile interface75
that help people develop healthy exercise and nutrition behaviors [25, 9]. The agents combined a parameterized, prescrip-76
tive, adaptive model of humans’ aerobic capability with AI scheduling methods. Going beyond benchmark datasets typical77
in AI & ML research, we developed a novel staged approach for evaluating collaborative agents [9, 13]. The evaluation ap-78
proach 1) characterized alignment with human experts, 2) assessed efficacy of the user interface [13], 3) benchmarked the79
agent adaptation space with simulated profiles, and 4) demonstrated a 20% increase in exercise volume over 6 weeks for80
21 participants. We built the agents [8, 12, 11] upon insights from behavioral psychology (adaptive goal setting [26], self-81
efficacy [27]) and cognitive science (the Common Model of Cognition [21]). My work [25, 9] was the first and is one of the82
very few demonstrations of AI operating with humans in ecological settings for long-time horizons.83

Under ARPA-E TransNet, I built an agent that influences people to adopt sustainable modes of transport [5, 10] to bring84
down a city’s energy consumption. This work brings together interdisciplinary methods from human factors research, be-85
havioral economics, AI & ML, and transportation systems to address a complex societal issue. We identified factors under-86
lying people’s transit-related choices through semi-structured interviews and surveys [8]. Then, we drew upon the rational87
choice theory [28] to develop a deep learning-based model of traveler mode adoption . This model biases plan selection in88
an AI planning framework [29] to generate energy-efficient plans for each individual traveler that are acceptable to them89
given their personal travel context. Through choice experiments [5] and transit simulations, we demonstrated 5% energy90
and 15% time savings in Los Angeles.91

Future Directions92

Leveraging my expertise in agent systems and architectures, I aim to extended GenAI agent frameworks such that they are93
flexible, reliable, and trusted. Specifically, I want to advance agent systems science along three critical thrusts. Advanced94
autonomy incorporates models of the world, task, and humans within GenAI agentic architectures. Cooperative multi-95
dimensional inference leverages both statistical inference and structured reasoning together to solve complex problems.96
And unified architectures support flexible, collaborative behavior in the real world relying on a principled integration of97
deep learning and model-based reasoning methods.98

Advanced Autonomy Current generation of GenAI agentic frameworks (AutoGen[30], LangGraph[31]) enable a flexible99
orchestration of various capabilities in service of a complex, multi-step task. However, they only implement autonomy of100
behavior - while a user can delegate a task to an agentic system, the steps and order of execution are specified by an AI101
designer. I want to enable advanced autonomy in agentic systems. With autonomy of reasoning, the agentic system can102
itself determine which steps to execute and when. Utilizing my prior experience in world, task, and human models, I will103
extend agentic frameworks with predictive models that enable contextual, flexible, and intentional behavior. World mod-104
els encode the world’s structure and dynamics, enabling agentic systems to condition their behavior on expectations of105
future states. Task models encode parameters, soft & hard constraints, and goals, enabling an agentic system to reason106
about task execution reliably. Human models encode the beliefs, desires, and intentions of human partners as well as drive107
expectations about their behavior, decision making, and learning; enabling agentic systems to individualize execution to a108
user’s needs. I will apply my research on OWL and ITL to impart autonomy of learning to agentic systems so that they can109
acquire and extend predictive models autonomously and through human teaching.110
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Cooperative Multi-dimensional Inference Foundation models’ [32] strengths are complementary to classical AI methods111
(e.g., knowledge graphs, search, planning etc.). They are robust to noise, uncertainty, and variation in the real world. How-112
ever, unlike classical AI, they implement implicit inference that is not easily understood, structured, or controlled, limiting113
their use in critical cases. While LLMs can handle variation in human expression, they are unable to reason methodically114
about action and causation like a planning system [33]. Planning systems, on the other hand, cannot deal with noise and115
partial-observability and must rely on foundation vision models.116

I will study the configuration space of foundation models and reasoning approaches with a problem-centered lens.117
Configurations differ in how onus of inference is distributed between the two systems and are appropriate for different118
usecases. For example, when a user wants to query for domain-specific information, inference can be driven by a foun-119
dation model with knowledge graph reasoning systems augmenting its context (LLM+KG [34]). When the user wants to120
evaluate various courses of action, a foundation model can be leveraged to generate them and a reasoning system to vali-121
date them, ensuring plausibility (LLM-modulo [35]). Where a user expects an agent to execute a task, a foundation model122
serves as an interface between the human and a task reasoner and executor (LLM+plan [23]). Through a structured explo-123
ration, I will uncover the tradeoffs in using different configurations in terms of data needs, inference time, accuracy, assur-124
ability etc. Further, I will relate the tradeoffs with problem characteristics, developing design guidance for agentic systems125
in the real world.126

Unified Architectures Human intelligence comprises multiple intelligent capabilities: perception, planning, action & con-127
trol, long/short-term memory, learning etc. in an integrated cognitive architecture [36]. Earlier cognitive architectures [21]128
sought to build a similar infrastructure for machines using symbolic reasoning methods. While these architectures had129
contextual, flexible behavior, real world with noise, uncertainty, and partial observability presented an operational chal-130
lenge. The discovery of modern subsymbolic inference (transformers [37] and their applications as foundation models131
[32]) has opened up the possibility of unified cognitive architectures that balance subsymbolic and symbolic inference to132
operate flexibly and robustly in the real world. Going beyond the original goals of cognitive architectures research that fo-133
cuses on the cognitive and rational bands [38], I want to develop architectures that are inherently collaborative, addressing134
the social band as well.135

I want to study learning from social interaction as a motivating problem for unified architecture research. Learning136
with social constructs is the most fundamental form of human learning. Parents, teachers, experts enable effective and ef-137
ficient learning in children, students, and novices. In these interactions, the facilitator trainer and the primary learner form138
a joint system, with the former helping the latter in achieving critical conditions of learning. These learning interactions139
are characteristically different from ML. Humans trainers communicate structure, provide examples, evaluate the learner’s140
competency bounds, provide feedback, adapt content, etc [7]. I will study the human-agent collaborative learning dyad141
from a variety of perspectives. Continuing my ongoing research, I will develop intelligent agents that learn novel domain142
concepts and task knowledge through natural interaction post deployment. In addition, I want to build agents that sup-143
port humans in learning and upskilling, helping them become resilient our rapidly changing economy and the world. This144
vision includes helping humans learn new tasks such as assembling a new artifact [39] using augmented reality embodi-145
ment or teaching humans new science and mathematics concepts using conversational and visual interfaces. To enable146
agents to be reactive to human teachers and learners, I will incorporate models of human learning [40], capabilities [41],147
task-oriented dialog [42] etc. to modulate decision making and response in an unified architecture.148

The recent successes of AI and ML are now accompanied with an ever increasing expectation of deploying them in real-149
world problems. I put forth a systems view of AI research and development, focusing on agent technology. I develop an150
inter-disciplinary approach to agent systems that builds upon prior state-of-art on world and task models and extends it to151
incorporate reasoning and learning about humans. My research will set the stage for a new generation of agents that are152
inherently collaborative and seamlessly integrate in human systems.153
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